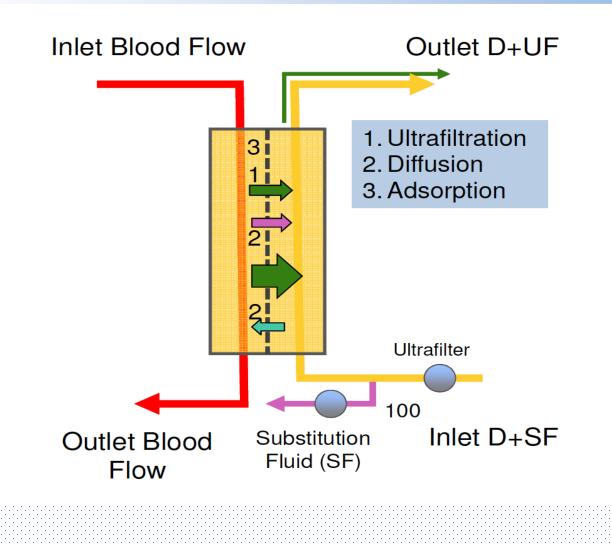
Nephrology and Transplantation Department Labbafinejad Medical Center

Shahid Beheshti University of Medical Sciences

Social Security Organization of Islamic Repoblic of Iran

HDF Online

Nooshin Dalili, MD


Associate Professor of Nephrology Labbafinejad Medical Center,SBMU

December, 2023

The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT)

12-15 December 2023 Homa Hotel, Tehran

HDF combines <u>diffusive</u>, <u>convective</u> and <u>adsorptive</u> clearances in the same module

Hemodiafiltration enhances clearances of middle and large molecular weight solutes

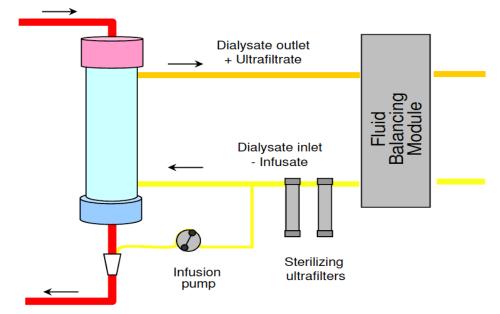
Review

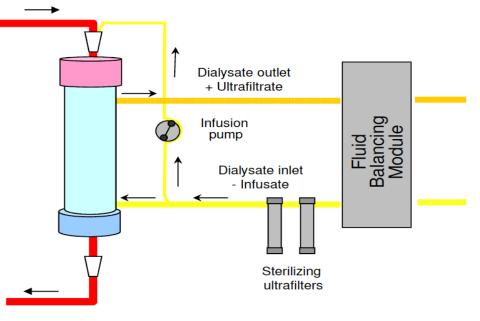
Blood Purif 2015;40(suppl 1):2–11 DOI: 10.1159/000437403 Published online: September 8, 2015

Hemodiafiltration: Technical and Clinical Issues

Claudio Ronco

Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV), San Bortolo Hospital, Vicenza, Italy


HDF On-line

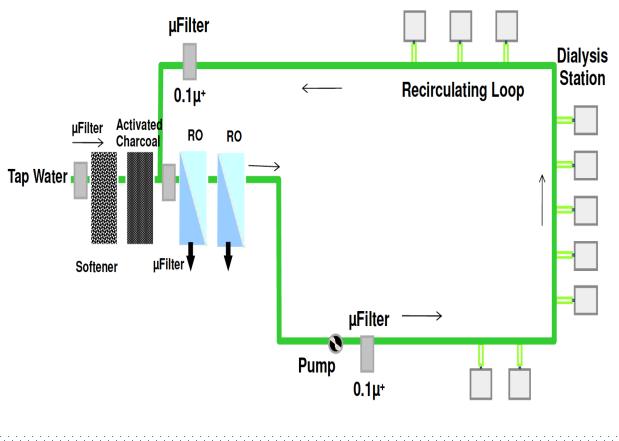

Postdilution 80ml/min HDF Filter 600ml/min 600ml/min balancing 520ml/min **DF** Filter OSP high-flux FPE 80ml/min 80ml/min Patient UF FPA \checkmark 600ml/min + Patienten UF 600ml/min + Patienten UF Predilution UFP Blood Purif 2015;40(suppl 1):2-11 DOI: 10.1159/000437403

The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT)

12-15 December 2023 Homa Hotel, Tehran

Online HDF, Modalities of substitution

Post-dilution on-line HDF


Volume of substitution ≈ 25 l/ses

Pre-dilution on-line HDF

Volume of substitution \approx 50l/ses

Blood Purif 2015;40(suppl 1):2–11 DOI: 10.1159/000437403

Water treatment system to produce ultrapure water

Water and dialysis fluid tend to the same degree of microbiological purity

International standards of water and dialysis fluid

Maximum levels	Regular Water	Ultrapure Water	Ultrapure Dialysis Fluid
Microbial contamination (CFU/mI) Sensitized methods	<100	<0.1	<0.1
Bacterial endotoxins (IU/ml) <i>LAL</i>	<0.25	<0.03	<0.03

Nephrol Dial Transplant (2002) 17 [Suppl 7]: 45-62

			Hi	18			Hi	20			Hi	23		
Dialysate flow (Q _D) mL/min Blood flow (Q _B) mL/min		500 200	500 300	500 400	800 500	500 200	500 300	500 400	800 500	500 200	500 300	500 400	800 500	
	Urea	198	281	341	414	199	287	349	427	199	290	354	439	
Clearance	Creatinine	194	263	304	372	196	271	316	390	197	276	324	403	
Ultrafiltration flow (Q _F)=0mL/min	Phosphate	194	263	297		196	271	309		198	277	320		
	Vitamin B ₁₂	155	184	210	239	161	195	220	259	166	204	227	272	
SC, (Sieving Coefficient)	B ₂ -Microglobulin						>	0.8						
Q _B = 300 mL/min Q _F = 60mL/min	Albumin						< 0	.001						
Ultrafiltration coefficient mL/h	/mmHg_Q _B = 300mL/min		Ç	99			1	11			12	24		
KoA Urea (Q _B = 300mL/min, Q	_D = 500mL/min)		14	450			17	'14			19	00		
Volume of blood compartment	(mL)		1	10			1:	25			14	11		
Membrane material						a	membris	polysulfo	ne					
Surface area (M ²)			1	.8			2	.0			2.	3		
Sterilization						()xygen-fr	ree gamm	na					
Wall thickness/inner diameter	(μm)						35/	195						
Units per box							2	20						

Removed by High Flux (<15 kD)	Molecular Mass, kD	Removed by HDF (15–24.9 kD)	Molecular Mass, kD	Not Currently Removed (>25 kD)	Molecu Mass, l
Methionine-enkephalin	0.5	Clara cell protein	15.8	Hyaluronic acid	25
Glutathione	0.6	Leptin	16	β -Trace protein	26
Angiotensin A	0.8	Myoglobin	17	Soluble TNF receptor-1	27
δ –Sleep-inducing peptide	0.8	TNF-α	17	Adiponectin	30
Dinucleoside polyphosphates	1	Soluble TNF receptor-2	17	FGF-23	32
Substance P	1.3	IL-1β	17.5	α 1-Microglobulin	33
Motilin	2.7	FGF-2	18	VEGF	34.2
Orexin B	2.9	IL-10	18	YKL-40	40
Atrial natriuretic peptide	3	Retinol binding protein	21.2	Pentraxin-3	40.2
Desacylgherlin	3.2	Prolactin	22	α 1-Acid glycoprotein	43
Vasoactive interstinal peptide	3.3	κ -Ig light chain	22.5	AGEs	45
Calcitonin	3.4	Complement factor D	23.75	λ -Ig light chain	45
Gherlin	3.4	IL-18	24	Visfatin	55
β-Endorphin	3.4	IL-6	24.5	AOPPs	> 60
Orexin A	3.5				
Calcitonin gene-related peptide	3.7				
Cholecystokinin	3.8				
Endothelin	4.2				
Neuropeptide Y	4.2				
SIAM-1	4.2				
Adrenomedullin	5.7				
Osteocalcin	5.8				
IGF-1	7.6				
IL-8	8				
Parathyroid hormone	9.5				
Guanylin	10.3				
β2-Microglobulin	11.8				
Uroguanylin	12				
Resistin	12.5				
Cystatin C	13.3				
Degranulation inhibiting protein ^a	14.1				

Thirty-one molecules had molecular mass under 15 kD, and therefore, they can be removed by high-flux dialysis. Fourteen molecules had molecular mass between 15 and 25 kD, and therefore, they can be removed by HDF. Fourteen molecules had molecular mass >25 kD. HDF, hemodiafiltration; FGF, fibroblast growth factor; VEGF, vascular endothelial growth factor: AGE, advanced glycosylation end product; AOPP, advanced oxidative protein products. Clin J Am Soc Nephrol 13: 805-814, 2018.

^aDegranulation inhibiting protein corresponds to angiogenin.

The 19th **International Congress of Nephrology**, **Dialysis** and Transplantation (ICNDT)

12-15 December 2023 Homa Hotel, Tehran

Middle Molecule	Association	Possible Mechanisms
IL-18	Cardiovascular mortality; aortic pulse wave velocity; unstable coronary plaque; coronary and thoracic aortic calcification	Promotion of atherosclerotic plaque instability, induction of IFN- γ , promotion of collagen and lipid deposition
IL-6	Left ventricular hypertrophy, systolic dysfunction; cardiovascular mortality	Coordination of local inflammatory cell influx and lymphocyte proliferation; promotion of coagulation
IL-1β	Left ventricular hypertrophy	Promotion of local inflammatory response within plaque
TNF-α	Left ventricular hypertrophy	Promotion of cardiac inflammatory response to stress
Pentraxin-3	Unstable coronary plaque	Infiltration of neutrophils into atherosclerotic plaque, prothrombotic effects, impairment of NO production
β -Trace protein	Atherosclerotic plaque; cardiovascular mortality	Possible functions acting against platelet aggregation <i>via</i> catalyzation of PGD2 production
Prolactin	Cardiovascular mortality	Proliferation of vascular smooth muscle cells, promotion of vasoconstriction
AGEs	Cardiovascular mortality	Deposition within vessel wall; induction of oxidative stress, inflammation, and endothelial dysfunction
Visfatin	Unstable atherosclerotic plaque	Induction of inflammatory macrophages within atherosclerotic plaque
Adiponectin	Atherosclerotic plaque	Expression of adhesion molecules; foam cell formation
Leptin	Atherosclerotic plaque	Expression of adhesion molecules; production of MCP-1, IL-6, and TNF- α
FGF-2	Cardiac hypertrophy	Induction of cardiomyocyte hypertrophic response
FGF-23	Cardiac hypertrophy	Induction of cardiomyocyte hypertrophic response

Table 3. Involvement of large middle molecules with cardiovascular disease

NO, nitric oxide; AGE, advanced glycosylation end products FGF, fibroblast growth factor.

Clin J Am Soc Nephrol 13: 805–814, 2018.

Original Paper

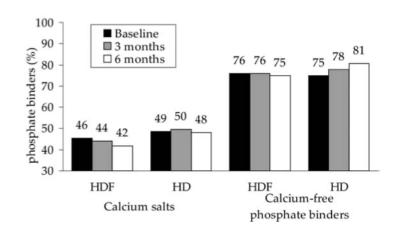
Blood Purif 2015;40:53–58 DOI: 10.1159/000430903 Received: October 14, 2014 Accepted: April 23, 2015 Published online: June 24, 2015

Treatment Time or Convection Volume in HDF: What Drives the Reduced Mortality Risk?

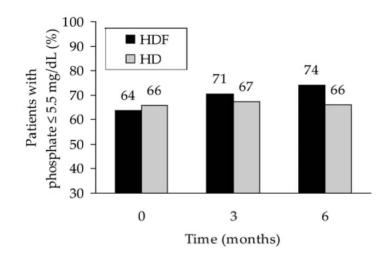
Table 2. Results

	HD patients;	HDF patients;	HDF patients;	HDF patients;
	convection	convection	convection volume	convection
	volume 0 l	volume <18.18 l	18.18–21.95 l	volume ≥21.95 l
	(n = 356)	(n = 115)	(n = 114)	(n = 115)
Crude	$1.0 \\ 1.0 \\ 1.0$	0.95 (0.66–1.38)	0.83 (0.57–1.21)	0.61 (0.41–0.93) ^c
Adjusted ^a		0.78 (0.52–1.16)	0.83 (0.56–1.23)	0.62 (0.41–0.95) ^c
Adjusted including treatment time ^b		0.74 (0.49–1.12)	0.83 (0.56–1.23)	0.64 (0.42–0.98) ^c

HRs for death of participants treated with HDF divided in tertiles of achieved convection volume as compared to participants treated with HD (reference group, HR 1.0); HRs with 95% confidence intervals.


^a Adjusted for: center differences, age, sex, previous vascular disease, diabetes, previous transplantation, baseline residual kidney function, baseline albumin, baseline creatinine, baseline hematocrit, vascular access and use of α - and β -blockers, RAS inhibitors and calcium antagonists at baseline (208 events, 75 missing). ^b Adjusted for all confounders mentioned above plus treatment time (208 events, 75 missing). ^c Indicates a significant difference in all-cause mortality risk at the level of p \leq 0.05.

Survival benefit of high-volume HDF over HD is independent of treatment time.


Blood Purif 2015;40:53–58 DOI: 10.1159/000430903

Short-term Effects of Online Hemodiafiltration on Phosphate Control: A Result From the Randomized Controlled Convective Transport Study (CONTRAST)

E. Lars Penne, MD, PhD,^{1,2} Neelke C. van der Weerd, MD,^{1,2} Marinus A. van den Dorpel, MD, PhD,³ Muriel P.C. Grooteman, MD, PhD,^{2,4} Renée Lévesque, MD,⁵ Menso J. Nubé, MD, PhD,^{2,4} Michiel L. Bots, MD, PhD,⁶ Peter J. Blankestijn, MD, PhD,¹ and Piet M. ter Wee, MD, PhD,^{2,4} on behalf of the CONTRAST Investigators

Figure 2. Proportion of patients using calcium salts and calcium-free phosphate binders at baseline and after 3 or 6 months of follow-up. Numbers above bars represent percentages. Abbreviations: HD, hemodialysis; HDF, hemodiafiltration.

Figure 3. Proportion of patients achieving phosphate treatment targets at baseline and after 3 or 6 months of follow-up. Numbers above bars represent percentages. ${}^{a}P < 0.05$ (vs baseline); ${}^{b}P < 0.05$ (difference in change between groups). Abbreviations: HD, hemodialysis; HDF, hemodiafiltration.

Considerable reduction of phosphate binders consumption

Phosphorus binders

pills

Maduell F et al, Nephro Dial Transplant. 2011; 0:1-13 ePub 13Sep2011

19th International Congress of Nephrology, Dialysis and Transplantation (ICNDT)

12-15 December 2023 Homa Hotel, Tehran

β_2 microglobulin

Hakim Vs Labbafinejad

				Period 1	Period 2
	Baseline	6 months	12 months	P: baseline vs 6 months	P: 6 months vs 12 months
Study group: n=30 OL-HDF					
eKt/V	1.20±0.08	1.21±0.08	1.34±0.11	NS	<0.0001
β ₂ microglobulin (mg/dL)	35.0±9.6	34.9±9.2	24.5±9.0	NS	<0.0001
Controls: n=35 Low Flux HD					
eKt/V	1.22±0.06	1.23±0.07	1.22±0.06	NS	NS
β_2 microglobulin (mg/dL)	36±12	37±13	37±11	NS	NS

Nephrology

Original Report: Patient-Oriented, Translational Research

Am J Nephrol 2008;28:949–957 DOI: <u>10.1159/000142724</u> Received: March 2, 2008 Accepted: May 15, 2008 Published online: July 2, 2008

Inflammation and Oxidative Stress in Patients on Hemodiafiltration

Vasilis Filiopoulos^a Dimitrios Hadjiyannakos^a Polixeni Metaxaki^a Vasilis Sideris^b Lambrini Takouli^a Angeliki Anogiati^b Dimosthenis Vlassopoulos^a

^aNephrology Department, A. Fleming Hospital and ^bHematology Department, Pendeli Pediatric Hospital, Athens, Greece

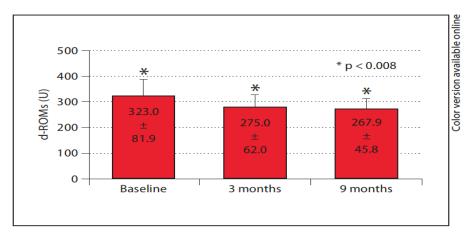


Fig. 1. Variations in plasma d-ROM levels during the study.

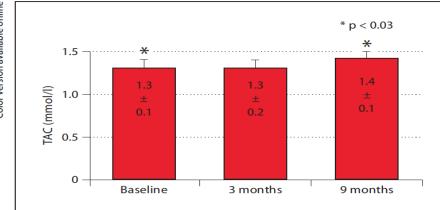
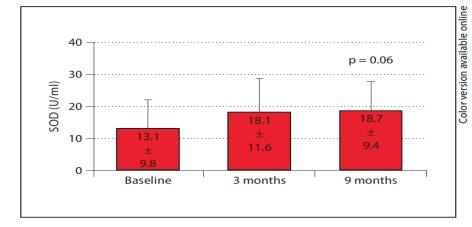
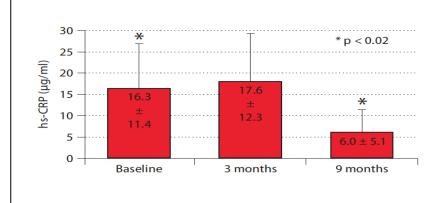
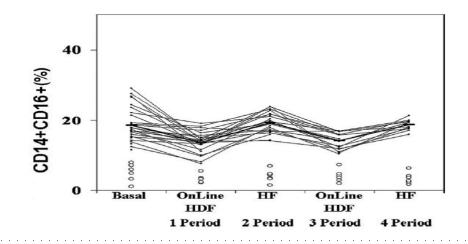
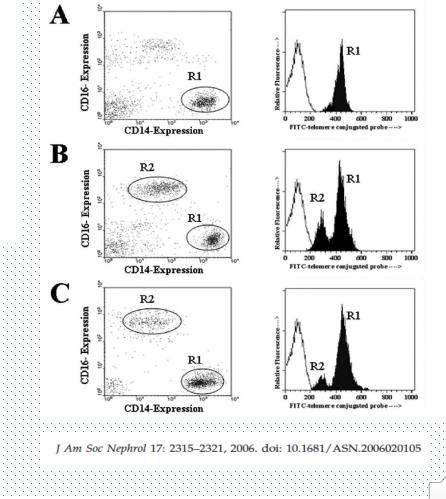




Fig. 2. Variations in plasma TAC levels during the study.

Fig. 4. Variations in plasma hs-CRP levels during the study.


Am J Nephrol 2008;28:949-957


Beneficial effects in reducing the activation of circulating cells, protein systems and preventing the induction of inflammation

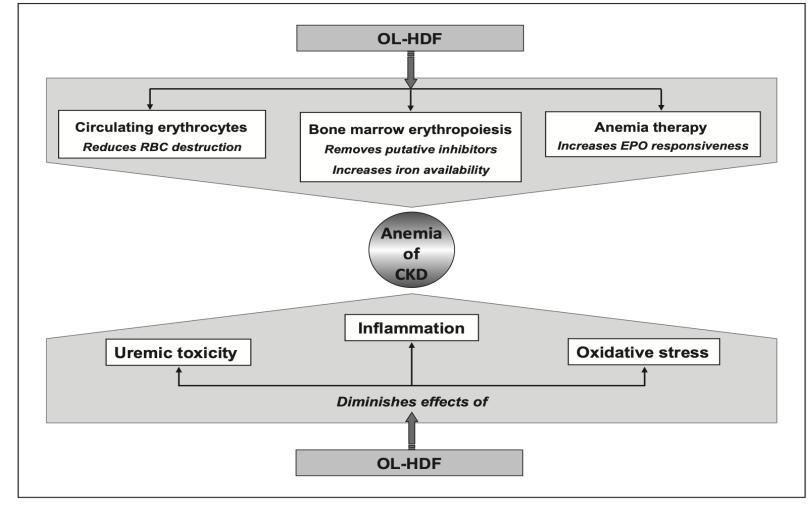
On-Line Hemodiafiltration Reduces the Proinflammatory CD14⁺CD16⁺ Monocyte-Derived Dendritic Cells: A Prospective, Crossover Study

Julia Carracedo,* Ana Merino,* Sonia Nogueras,* Diana Carretero,* Isabel Berdud,* Rafael Ramírez,* Ciro Tetta,⁺ Mariano Rodríguez,* Alejandro Martín-Malo,* and Pedro Aljama*

*Unidad de Investigación, Servicio de Nefrología, Hospital Universitario Reina Sofía, Córdoba, Spain; and [†]Fresenius Medical Care, Research Extracorporeal Therapies, Bad Homburg, Germany

In-Depth Review

Blood Purif 2011;32:210–219 DOI: <u>10.1159/000329573</u> Published online: July 29, 2011


Impact of Hemodialysis Therapy on Anemia of Chronic Kidney Disease: The Potential Mechanisms

Sudhir K. Bowry^a Emanuele Gatti^{a, b}

^aFresenius Medical Care, Bad Homburg, Germany; ^bCentre for Biomedical Technology at the Danube University of Krems, Krems, Austria

Blood Purif 2011;32:210-219

Fig. 2. Mechanisms by which OL-HDF could provide benefits in terms of anemia control. Published data show that OL-HDF favorably impacts anemia of CKD by not only removing putative inhibitors that suppress erythropoiesis, reducing red cell destruction and increasing iron availability, but also by restricting underlying conditions affecting anemia therapy.

Blood Purif 2011;32:210–219

Original Article

Kidney Res Clin Pract 2020;39(1):103-111 pISSN: 2211-9132 • eISSN: 2211-9140 https://doi.org/10.23876/j.krcp.19.082

Check for updates

Yu Ho Lee^{1,*}^(b), Yoon Soo Shin^{1,*}^(b), So-Young Lee^{1(b)}, Yang Gyun Kim^{2(b)}, Sang Ho Lee^{2(b)}, Ju Young Moon^{2(b)}, Kyung Hwan Jeong^{3(b)}, Hyeon Seok Hwang^{3(b)}, Shin Young Ahn^{4(b)}, Hong Joo Lee^{5(b)}, Dong-Young Lee^{6(b)}, Eun-Jung Ko^{7(b)}, Hye Jeong Cho^{8(b)}, Dong Ho Yang^{1(b)}, Hye Yun Jeong^{1(b)}

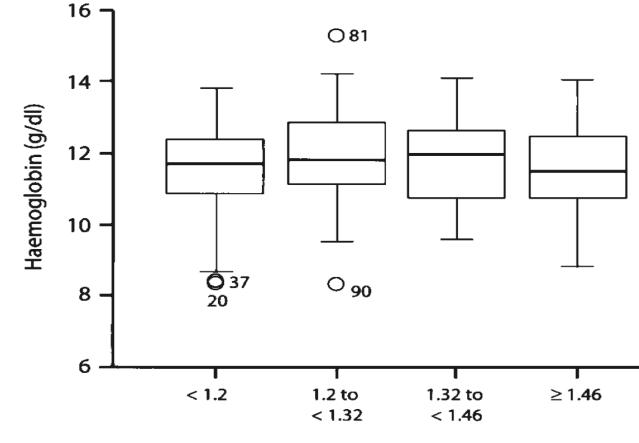
Laboratory Patient groups		Changes after	Univariate analysis		Multivariate analysis ^a	
measure	Patient groups	conversion	Unstandardized β (95% Cl)	P value	Unstandardized β (95% CI)	P value
Hemoglobin	HD group	0.2 ± 1.3	Reference		Reference	
(g/dL)	OL-HDF group	0.6 ± 1.2	0.47 (0.04, 0.90)	0.034	0.74 (0.18, 1.30)	0.010
Ferritin (ng/mL)	HD group	93.2 ± 239.9	Reference		Reference	
	OL-HDF group	201.3 ± 493.1	108.1 (-1.9, 218.1)	0.054	106.6 (-7.1, 220.2)	0.066
TSAT (%)	HD group	-2.2 ± 15.4	Reference		Reference	
	OL-HDF group	-4.2 ± 18.7	-2.1 (-7.6, 3.5)	0.467	3.4 (-3.2, 10.0)	0.309
ESA dose	HD group	-115.7 ± 189.7	Reference		Reference	
(IU/kg/wk) ^b	OL-HDF group	-170.5 ± 257.1	-54.8 (-126.1, 16.5)	0.131	-46.6 (-119.1, 25.9)	0.206
Albumin (g/dL)	HD group	-0.1 ± 0.3	Reference		Reference	
	OL-HDF group	0.1 ± 0.3	0.20 (0.09, 0.30)	< 0.001	0.19 (0.08, 0.30)	< 0.001

Table 3. Multiple linear regression on the changes of anemia-related variables after HDF conversion in hemodialysis patients

^aAdjusted for age, sex, etiology of end-stage renal disease, time on dialysis, single-pool Kt/V, high sensitivity C-reactive protein (hs-CRP), use of ESA, and use of intravenous iron. ^bFor darbepoetin alfa and methoxy polyethylene glycol-epoetin beta, the dose per week was multiplied by 200 to convert the units from micrograms to international units (Ref. [14]).

Kidney Res Clin Pract 2020;39(1):103-111

Nephrol Dial Transplant (2003) 18 [Suppl 8]: viii29–viii35 DOI: 10.1093/ndt/gfg1089


Nephrology Dialysis Transplantation

Dialysis adequacy and response to erythropoietic agents: what is the evidence base?

Francesco Locatelli and Lucia Del Vecchio

Department of Nephrology and Dialysis, Ospedale A. Manzoni, Lecco, Italy

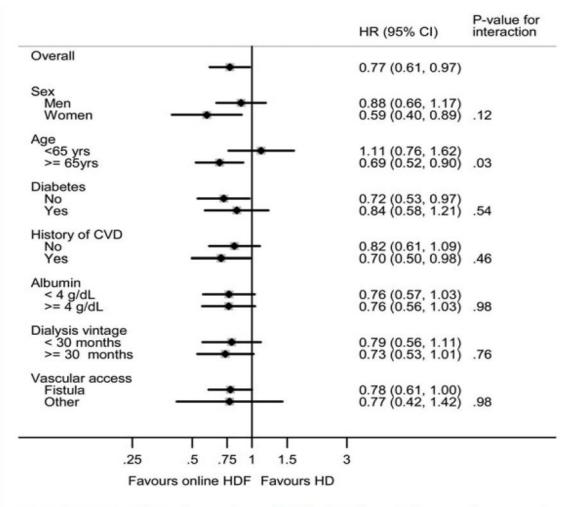
Kt/V quartiles

Fig. 1. The relationship between haemoglobin levels and Kt/V quartiles in 197 patients on long-term haemodialysis at Manzoni Hospital, Lecco, Italy. No relationship between haemoglobin levels and dialysis adequacy was found in this unselected population (F=0.83, P=not significant).

Nephrol Dial Transplant (2003) 18 [Suppl 8]: viii29-viii35

19th The International Congress of Nephrology, Dialysis and Transplantation (ICNDT)

12-15 December 2023 Homa Hotel, Tehran Nephrol Dial Transplant (2016) 31: 978–984 doi: 10.1093/ndt/gfv349 Advance Access publication 22 October 2015



Original Articles

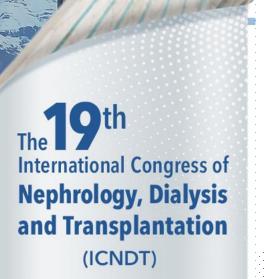
Haemodiafiltration and mortality in end-stage kidney disease patients: a pooled individual participant data analysis from four randomized controlled trials

		HR (95% CI)	P-value for interaction
Overall	-•-	0.86 (0.75, 0.99)
Sex Men Women	-	0.86 (0.73, 1.02 0.85 (0.66, 1.10) .95
Age <65 yrs >= 65yrs	_ -	1.06 (0.83, 1.36 0.82 (0.70, 0.97) .07
Diabetes No Yes		0.89 (0.74, 1.07 0.77 (0.61, 0.97) .34
History of CVD No Yes	-	0.91 (0.76, 1.10 0.80 (0.65, 0.98) .29
Albumin <4 g/dL >= 4 g/dL	-	0.84 (0.70, 1.01 0.87 (0.73, 1.05	.75
Dialysis vintage < 30 months >= 30 months	-	0.92 (0.75, 1.13 0.80 (0.65, 0.97	.32
Vascular access Fistula Other		0.91 (0.78, 1.07 0.70 (0.50, 0.97) .15
.25	.5 .75 1 1.5	3	
Favo	urs online HDF Favours	HD	

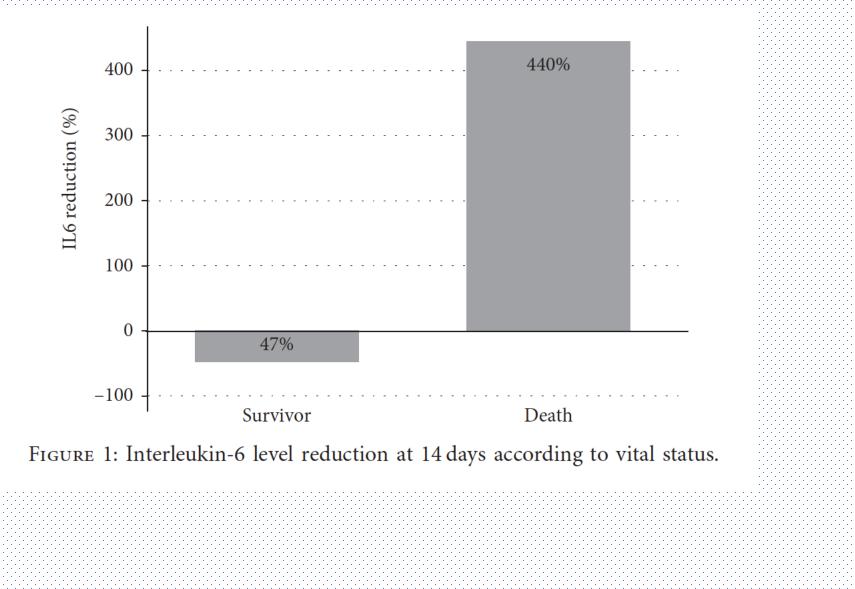
FIGURE 1: HRs (boxes) and 95% CI (bars) for all-cause mortality in patients receiving online HDF versus HD, overall and in subgroups.

FIGURE 2: HRs (boxes) and 95% CI (bars) for cardiovascular mortality in patients receiving online HDF versus HD, overall and in subgroups.

Hindawi Case Reports in Nephrology Volume 2021, Article ID 5575928, 7 pages https://doi.org/10.1155/2021/5575928



Case Series


Targeting Cytokine Storm in COVID-19: A Role of Online Hemodiafiltration with Asymmetric Cellulose Triacetate in Maintenance Hemodialysis Patients—A Report of 10 Cases

José C. De La Flor^[b],¹ Francisco Valga^[b],² Alexander Marschall^[b],³ Tania Monzon^[b],⁴ Cristina Albarracín,¹ Elisa Ruiz,¹ and Miguel Rodeles^[b]

¹Department of Nephrology, Central Defense Gomez Ulla Hospital, Madrid, Spain

12-15 December 2023 Homa Hotel, Tehran

In conclusion while clinical evidence is rising in favor of OL-HDF, new technological advances make this treatment safer, more reliable and economically sustainable. It is likely that we will face a significant expansion of the utilization of OL-HDF and an increased number of countries adopting this technique in the years to come.

